XIV Congress of the International Society of Photogrammetry Hamburg 1980 Commission VII Presented Paper
S. L. Ekenobi

Institut fuir Photogrammetrie und Ingenieurvermessungen Universität Hannover, Federal Republik of Germany

MULTISPECTRAL IMAGE CLASSIFICATION IN REMOTE SENSING:
THE CLASS-BOUNDARIES APPROACH

Abstract

A method using mathematical functions to represent the boundaries among ground cover classes has been found to be more efficient than the Maximum Likelihood Method for the classification of covers with poor within-theclass variances. Fictitious data as well as LANDSAT MSS data have been used to demonstrate the efficiency of this method.

INTRODUCTION

The Maximum Likelihood Method of multispectral image classification /6,12/ has been widely accepted as a very powerful tool. However, its precondition of normally distributed data has also been accepted as a major worry. A lot of work has therefore been going on for some years in the search, not necessarily for a replacement but at least for an alternative when the situation demands it $/ 3,4 /$. This paper describes an alternative where image class discriminators are the mathematical boundaries among the several image classes.

This investigation was done in two stages: the fictitious data and the real (LANDSAT) data stages. The fictitious data stage was necessary for the development of adequate procedures and also for confirming these procedures as both mathematically correct and economically justifiable.

MATHEMATICS OF THE CLASS BOUNDARIES

Members of any class must exist within definite boundaries or hyperplanes. If the total number of classes is k, then the total number of hyperplanes is given by

$$
1=\frac{k \cdot(k-1)}{2}
$$

A hyperplane may be a first order or a second order polynomial, and its coefficients are computed in an iterative procedure using the known samples of the two classes that it tries to separate /8/. The hyperplane actually
runs down the middle of a "dead zone" whose width is chosen arbitrarily and which becomes unnecessary when the data have zero within-the-class variability.
Let,
Spectral values vector for an unknown sample $=G$
Coefficients of an hyperplane $=C$
No. of spectral bands $=n$
No. of classes $=k$
A discriminator for the unknown sample,

$$
f_{i, j}(G)=C_{i, j}^{\top} G+C_{(n+1)} i, j
$$

where i, j are the classes on both sides of the hyperplane. And obviously 1 different values of $f_{i j}(G)$ may be computed.
The unknown sample is classified as member of class 1 if and only if

$$
f_{1,2}(G), \ldots \ldots, f_{1, k}(G) \text { are } \geq 0
$$

It is however member of any other class q if and only if

$$
f_{q,(q+1)}(G), \ldots \ldots, f_{q, k}(G) \text { are } \geq 0
$$

for $q<k$,
and also if

$$
f_{1, q}(G), \ldots \ldots, f_{(q-1), q}(G) \text { are }<0
$$

PREPROCESSING OF MSS DATA
The preprocessing of multispectral scanner digital data by eigen-vector transformation has become a very well known data compression procedure /1, 2, 5, 9, 10/. In the present investigation, however, no data compression is intended. The same transformation is used for higher image classification accuracy and, for the class-Boundaries method, also for higher savings in computer time resulting from the quicker convergence of the algorithm. The procedure is as follows:
a) division of every spectral value by the corresponding band standard deviation, and then,
b) transformation of the values for every picture element with the nxn matrix of eigen-vectors of the covariance matrix computed using all training samples.

INVESTICATION WITH FICTITIOUS DATA

A grid, 30 rows by 50 columns, was constructed and divided up into four zones to represent four image classes (Fig. A 1 in the Appendix). For the spectral data generation, starting values were taken from curves of actual measurements as reported by K. T. KRIEBEL /7/ for Savannah (class 1), Bog (class 2), Pasture (class 3) and Coniferous Forest (class 4), for the following illumination conditions:

Zenith angle of incidence	$=0^{\circ}$
zenith angle of reflection	$=0^{\circ}$
azimuth difference between the incident and the reflected rays	$=0^{\circ}$

Savannah was measured in Namibia in late winter; and Bog, Pasture and Coniferous Forest in the Federal Republic of Germany in late summer. Values extracted from the curves were those corresponding to the LANDSAT bands as follows:

MSS band 4:	$.5-.6 \mu \mathrm{~m}$
MSS band 5:	$.6-.7 \mu \mathrm{~m}$
MSS band 6:	$.7-.8 \mu \mathrm{~m}$
MSS band 7:	$.8-1.1 \mu \mathrm{~m}$

Data actually stored on tape were these starting values which were then assumed to be 100% pure spectral signatures, so that the amount of variance in the data could be varied at will, by changing the value of a constant, c, which represents the level of overall variance in the whole data (see Appendix A for the mathematical basis for the fictitious data generation).

CLASSIFICATION WITH THE FICTITIOUS DATA

Results of classifications at various values of c by the Maximum Likelihood method for both the preprocessed and the unpreprocessed data are represented by curves in Fig. Is, and may be summarized as follows:
a) Classification by the Maximum Likelihood method is impossible at $c=0$.
b) Classification accuracy increases generally with increasing c. There exists, however, for each curve, a zone of confusion, whese accuracy may decrease with increasing c.
c) Data preprocessing generally raises classification accuracy. However, there may be an apparent lowering of accuracy within the zones of confusion.

With the preprocessed data, classifications were then carried out by both the Maximum Likelihood and the Class Boundaries methods for $c=0.3$ which is too low for the Maximum Likelihood method and just outside the zone of confusion (Fig. 1). 40 training samples were used for each class. The
results are shown in Tables 1 and 2. The elements in the first row (class

1) for example, tell how the algorithm sees the group of 340 pixels
labelled class 1. Each class-accuracy (or "\% GOOD") is calculated as

$$
\frac{\text { diagonal element in perform. matrix }}{\text { namber of the class test samples }} \times 100 \%
$$

The overall accuracy of classification is calculated as

$$
\text { sum of diag. elements in perform. matrix } \times 100 \%
$$ total number of test samples

Fig. 1. Behaviour of accuracy of classification by the Maximum Iikelihood Method.

These results show clearly the suitability of the Class Boundaries method for the classification of data with low overall variances, c. Infact, classification accuracy is 100% for $c=0$; and such data (see Table A 2 in the Appendix) may be classified with only one training sample per class.

Table 1. Fictitious Data Classification by the Maximum Iikelihood Method.

```
THF PEPFOR:IAIICE H.STनIX
(LAST & COLUMNS FEPFESEMT -TOTALS- A!M -SOMOU- حEaHECTIVELY)
                                    *44%%4****
\begin{tabular}{rrrrrrr} 
CLASS 1 & 113 & 12 & 212 & 3 & 346 & 33 \\
\(C L A S S\) & 128 & 97 & 11 & 61 & 297 & 33 \\
\(C L A S S\) & 3 & 114 & 3 & 102 & 2 & 227 \\
\(C L A S S\) & 4 & 85 & 119 & 1 & 27 & 232 \\
\hline 6
\end{tabular}
```



```
ACCUPACY OF CLASSIFICATION = 31.4=0
THE MISCLASSIFIED TFATIIfO SAlPLEO
25 FROM CLASS 1
2? FROM CLASS 2
19 FROM CLASS 3
36 FROM CLASS 4
```

Table 2. Fictitious Data Classification by the Class Boundaries Method: (degree of polynomials=1, dead zone=0.5)

```
THE PERFORMANCE MATRIK
(LAST 3 COLUMNS REPRESENT -REJECTS-, -TGTALS- AND -%GOOD-
\begin{tabular}{lrrrrrrr} 
& & CL.I & CL. 2 & CL.3 & CL.4 & & \\
CLASS 1 & 320 & 4 & 14 & 0 & 2 & 340 & 74 \\
CLASS 2 & 0 & 272 & 0 & 25 & 0 & 297 & 72 \\
CLASS & 3 & 10 & 2 & 215 & 0 & 0 & 227 \\
CLASS 4 & 0 & 22 & 0 & 210 & 0 & 232 & 71
\end{tabular}
ACCURACY OF CLASSIFICATION = 92.79%
the misclassified training samples
0 FROM CLASS 1
2 FROM CLASS 2
O FROM CLASS 3
4 FROM CLASS 4
```


INVESTIGATION WITH LANDSAT DATA

Multispectral image classification of vegetative cover is now almost always successful by the Maximum Likelihood method. Most vegetative covers, therefore, have high levels of variance. It was then necessary for this investigation to find an area with little vegetation, but with as many as possible of other types of ground cover.

A $90 \times 40 \mathrm{~km}$ terrain, involving 923,400 picture elements, in the plateau area of the Plateau State of Nigeria, with the State Capital city of Jos to the North, was found to be adequate. But for the Government Timber Plantations and Forest Reserves, vegetation is almost non-existent in this area during the dry season. Being a strip-mining region, large water bodies are every where all year round. The LANDSAT scene, ID No. E-2317, center $10012^{\circ} \cdot \mathrm{N}, 8^{\circ} 35^{\circ} \mathrm{E}$, was exposed on December 5, 1975 at $9 \mathrm{a} . \mathrm{m}$. Eight ground cover classes were chosen as follows:

Class 1: Sedimented waters.
Class 2: Heavily sedimented waters.
Class 3: Government Timber Plantations; the Melina is the specie that never completely sheds its leaves, but maintains the process of gradual replacement in winter.
Class 4: Government animal and forest reserves. They contain scattered bushes.

Class 5: Bare ground, sandy.
Class 6: Asphalt (samples taken from the airport).
Class 7: Towns and cities.
Class 8: Irrigated vegetable farms.
Forty training samles were chosen for each class. It must be mentioned however that asphalt (class 6) samples were so few that the training samples were again included in the test samples. The training samples of sedimented waters (class 1) are presented in Table A 3. Both the unpreprocessed and the preprocessed data were classified by the Maximum Likelihood method. Only the preprocessed data was classified by the Class-Boundaries method.

Table 3. Landsat Data Classification by the Maximum Likelihood Method, without preprocessing.

```
THE PERFORMAMCE IILTFIX
    AGCURACY OF CLASSIFICATION = 31.2G%
    THE MISCLASSIFIED TRAI!IIIG SAMPLES
    O FROM CLASS l
    5 FROM CLASS ?
4 0 ~ F R O M ~ C L A S S ~ 3 ~
40 FROM CLASS 4
4 0 ~ F R O M ~ C L A S S ~ 5 ~
4 0 ~ F R O M ~ C L A S S ~ 6 ~
```



```
4 0 ~ F R O M ~ C L A S S ~ \% - ~ \%
```

 (LAST 2 COLUMNS FEPRESEMT -TOTALS- MUD -めGOUO- 2ESHECTIVELY)

CL. $1 \quad \mathrm{CL}: 2 \mathrm{CL} .3 \mathrm{CL} .4 \mathrm{CL.5} \quad \mathrm{CL.5} \quad \mathrm{CL} .7 \mathrm{CL} .8$

CLASS	1	168	0	0	0	0	0	0	0	160
CLASS 2	12	143	0	0	0	0	0	0	155	92
CLASS 3	0	130	0	0	0	0	0	0	130	0
CLASS 4	4	116	0	0	0	0	0	0	120	0
CLASS 5	0	120	0	0	0	0	0	0	120	0
CLASS 6	0	44	0	0	0	0	0	0	44	0
CLASS 7	0	103	0	0	0	0	0	0	103	0
CLASS 8	0	154	0	0	0	0	0	0	154	0

Table 4. Landsat Data Classification by the Maximum Likelihood Method, with preprocessing.
THE PERFORMANCE MATRIX
(LAST 2 COLUMNS REPRESENT -TOTALS- AHID -GGOOD- 2ESPECTIVELY)

	CL. 1	CL. 2	CL. 3	CL. 4	CL. 5	CL. 6	CL. 7	CL. 8		
CLASS 1	0	0	0	0	0	0	158	0	168	0
CLASS 2	0	0	118	0	0	33	4	0	155	0
CLASS 3	0	1	46	0	0	83	0	0	130	35
CLASS 4	2	19	8	29	3	7	46	6	120	24
CLASS 5	2	31	0	25	10	0	う2	0	120	8
CLASS 6	1	3	7	2	13	6	5	7	44	14
CLASS 7	10	41	4	9	11	2	26	0	103	25
CLASS 8	0	5	76	0	0	62	11	0	154	0

ACCURACY OF CLASSIFICATION $=11.77 \%$
THE MISCLASSIFIED TRAINIMG SAMPLES
40 FROM CLASS 1
40 FROM CLASS 2
25 FROM CLASS 3
35 FROM CLASS 4
29 FROM CLASS 5
34 FROM CLASS 6
29 FROM CLASS 7
40 FROM CLASS 8

DISCUSSION ON LANDSAT DATA CLASSIFICATIONS

Considering the lowering of the Maximum Likelihood classification accuracy through data preprocessing (Tables 3 and 4), it is clear that this combination of ground covers has an overall variance, c, that falls within the zone of confusion. Three more observations should be made:
a) Table 3 should not be taken seriously, and hence there exists no real lowering of accuracy as is apparent in Table 4. The fair chance given to each class through the preprocessing should be appreciated.
b) In spite of the poor condition of the leaves at that time of the year, the Plantations (class 3), still stand out as the best classified (Table 4).
c) The water bodies and the irrigated vegetable farms (classes $1,2,8$) are not classified at all (Table 4).

Table 5 shows the result of the classification by the Class-Boundaries method which may be compared with that by the Maximum Likelihood method. Both the sedimented and the heavily sedimented waters (classes 1 and 2) were classified 100% correct. One further comparison is in the computation times. While the Maximum Likelihood method used 2.9 minutes, the Class-Boundaries method used 2.4 minutes.

Table 5. Landsat Data Classification by the Class Boundaries Method: (degree of polynomials=1, dead zone=0.5)

CONCLUSION

Results have shown the effectiveness of Class Boundaries of first order polynomials for the classification of ground covers with low variances. Although investigations are not yet complete, tests with fictitious data confirm the goodnesss of the second order polynomials for higher levels of variances. Impressive is the fact that this method is more economical, at least at low variances, than the Maximum Likelihood method. The imm portance of preprocessing, as described here, to both the Maximum Likelihood and the Class Boundaries methods has also been demonstrated.

REFERENCES

1. Anuta, Paul, E.:

Digital Preprocessing and Classification of Multispectral Earth Observation Data. Laboratory for Application of Remote Sensing, Purdue University.
2. Donker, N.H.W. and Mulder, N.J.:

Analysis of MSS Digital Imagery with the Aid of Principal Component Transformation. ISP Commission VII, Presented Paper.
3. Haberäcker, Peter:

Untersuchungen zur Klassifizierung multispektraler Bilddaten aus der Fernerkundung, Doktor-Ing, Dissertation, Technische Universität, Berlin, 1978.
4. Hsu, Shin-Yi:

The Mahalanobis Classifier with the Generalized Inverse Approach for Automated Data Processing. Annual Proceedings of the A.S.P., 1978.
5. Jenson, Susan K. and Waltz, Frederick, A.:

Principal Components Analysis and Canonical Analysis in Remote Sensing. Annual Proceedings of the A.S.P., 1979.
6. Kraus, von Kar1:

Zur Theorie der Klassifizierung multispektraler Bilder. Bildmessung und Luftbildwesen, Organ der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung. Juli 1979.
7. Kriebel, K.T.:

Reflection Properties of Vegetated Suffaces: Tables of Measured Spectral Biconical Reflectance Factors. Universität München, Meteorologisches Institut; Wissenschaftliche Mitteilung Nr. 29.
8. Meisel, William, S.:

Mathematics in Science and Engineering, Vol. 83: Computer-Oriented Approaches to Pattern Recognition. Academic Press, New York.
9. Merembeck, Benjamin, F. and Turner, Brian T.:

Directed Canonical Analysis and the Performance of Classifiers under its Associated Linear Transformations. Symposium on Machine Processing of Remotely Sensed Data, Purdue University, June 1979.
10. Mulder, NaJ. and Hempenius, S.A.:

Data Compression and Data Reduction Techniques for Visual Interpretation of Multispectral Images. ITC, the Netherlands.
11. NASA Earth Resources Technology Satellite. Data Users Hand-Book, 1972.
12. Swain, P.H. and Davis, S.M. (Editors):

Remote Sensing: The Quantitative Approach. Mc Graw-Hill International Book Company.

APPENDIX:
THE MATHEMATICAL BASIS FOR THE FICTITIOUS DATA GENERATION
The measured spectral value of a picture element for a particular spectral band may be represented as

$$
y=B+E
$$

where,
B is a constant representing the characteristics of the object, and
E represents the random influence contributed by object impurities, illumination, detectors, digital recording, data transmission, reception and reduction systems /7, 11/.

In the data generation, while B is the same for all pixels of the same class for any particular band (Tables A 1 and A 2), E varies for every pixel. For any particular class for any particular band, the E's are random variables of mean B and standard deviation,

$$
\sigma=C \times B
$$

where c is a constant for all the classification data. By this arrangement, the belonging-to-the-same-family of all pixels in the same class is maintained.

> Fig. A1. The 1,500 fictitious picture elements in their respective classes.
> 222222222222222222222222222222f11II11111111111111 22222222222222222222222222222211111111111111111111 22222222222222222222222222222211111111111111111111 2222222222222222222222222222221111111111111111111222222222222222222222222222222玉I1I111111111111111 2222222222222222222222222222221111111111111111111 222. 1111111111111111111111111111122222222222222222222. 1111111111111111111111111111112222222222222222222 11111111111111111111111111111111122222222222222222 1111111111111111111111111111111F1111222222222222222. 11111111111111111111111111111111111122222222222222. 1111111111111111111111111111151111111222222222222. 1111111111111111111111111111111111111112222222222. 11111111111111111111111IE1111115111111111222222222. 112222222 4444444444444444444444444333333333333333333322222. 4444444444444444444444444333333333333333333332222 4444444444444444444444444333333333333333333333322 2. 4444444444444444444444444333333333333333333333333. 4444444444444444444444444333333333333333333333333 4444444444444444444444444333333333333333333333333 4444444444444444444444444333333333333333333333333. 4444444444444444444444444333333333333333333333333 . 4444444444444444444444444333333333333333333333333 . 4444444444444444444446444333333333333333333333333 44444444444444444444444443333333333333333333333333 444444444444444444444446443333333333333333333333333 4444444444444444444444444333333333333333333333333

Table A1. Spectral Reflectance Factors taken from Tables and assumed to be 100% pure.

Wave Iengths ($\mu \mathrm{m}$)

Ground Cover	$.5-.6$	$.6-.7$	$.7-.8$	$.8-1.1$
Savannah (class 1)	.0825	.1100	.1300	.1700
Bog (class 2)	.0255	.0425	.0850	.1350
Pasture (class 3)	.0415	.1000	.2450	.3900
Conif. Forest (class 4)	.0140	.0275	.0620	.1070

Table A2. Some Samples from Fictitious Data with $c=0$. (Row and Column numbers are indicated)

	14	31	. 0825	.1100	.1300	. 1700
	14	32	. 0825	.1100	.1300	.1700
	15	25	.0825	.1100	. 1300	.1700
	15	26	-0825	.1100	.1300	.1700
	15	27	. 0825	.1100	.1300	.1700
5 FROM	CLASS	1				
	10	49	. 0255	. 0425	. 0850	.1350
	10	50	. 0255	. 0425	.0850	. 1350
	11	47	. 0255	. 0425	. 0850	.1350
	11	48	. 0255	. 0425	. 0850	.1350
	11	43	. 0255	.0425	.0850	.135 u
5 FROM	CLASS	2				
	20	27	. 0415	.1000	. 2450	.3900
	20	28	. 0415	.1000	. 2450	.3900
	20	37	. 0415	.1000	. 2450	.3900
	20	38	. 0415	.1000	. 2450	.3900
	20	43	. 0415	.1000	. 2450	.3900
5 FROM	CLASS	3				
	24	24	.0140	. 0275	. 0020	.1070
	25	24	.0140	.0275	. 0620	.1070
	25	24	. 0140	. 0275	. 0020	.1070
	26	24	.0140	. 0275	. 0620	.1070
	29	24	.0140	.0275	. 0020	.1070
5 FROM	CLASS	4				

Table A3. Landsat Data Training Samples for the Sedimented Waters (class 1).

